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Abstract
Notwithstanding radical conceptual differences between classical and quantum
mechanics, it is usually assumed that physical measurements concern
observables common to both theories. Not so with the eigenvalues (±1) of the
parity operator. The effect of such a measurement on a mixture of even and odd
states of the harmonic oscillator is akin to separating at a single stroke a pair
of shuffled card decks: the result is a set of definite parity, though otherwise
mixed. Here we derive the general form of a parity collapsed state, whether pure
or mixed. The signature of positive or negative parity is a corresponding spike
in the Wigner function which is sharpened by decoherence. We conjecture that
states with pure parity always have negative values in their Wigner functions.

PACS numbers: 03.65.Ta, 03.65.Yz, 03.67.Mn

(Some figures in this article are in colour only in the electronic version)

The parity operator, R̂0 = (−1)̂n, is an observable that is currently measured in quantum
optics [1–3]. Here n̂ = Ĥ /h̄, where h̄ is the Planck constant and Ĥ is the Hamiltonian
of the harmonic oscillator with unit frequency. Thus the number (or Fock) states of the
harmonic oscillator are specific examples of parity eigenstates, but the parity operator, or the
reflection with respect to any other phase space point, R̂x, can be applied to arbitrary states.
The important point is that parity is a pure quantum property, which can be generated by a
measurement even on a mixed, classical-like state resulting from decoherent evolution [4, 5].
In such a case, quantitative measures of decoherence, such as linear, or Von Neumann entropy,
will still point out the lack of purity after the collapse onto a definite parity. Focussing on the
parity is a promising strategy for dealing with decoherence of a quantum system, for, if the
loss of a quantum in an orthogonal basis switches the parity, a second loss restores it. This
property can be used for atomic interfrometers [1] and has also been suggested for stabilizing
quantum computers [6] and for teleportation protocols [7].
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Instead of depending on an infinite basis in Hilbert space to describe mixed, parity
reduced states, it is much more sensible to rely on the Wigner function, W(x) [8], which is
proportional to the expectation of R̂x [9, 10]. The quantum operator, R̂x, corresponds to a
(classical) reflection through the phase space point x = (p, q), i.e. other points x′ → 2x − x′.
It is possible to specify R̂x by a superposition of projection operators [11], |q〉〈q ′|:

R̂x = 1

2

∫
dq ′

∣∣∣∣q − q ′

2

〉
exp

(
−i

pq ′

h̄

) 〈
q +

q ′

2

∣∣∣∣ . (1)

From this we obtain the well-known definition of the Weyl symbol for an arbitrary operator,
Â, as [12–14]

A(x) = 2Tr R̂xÂ =
∫

dq ′
〈
q +

q ′

2

∣∣∣∣ Â ∣∣∣∣q − q ′

2

〉
exp

(
−i

pq ′

h̄

)
. (2)

Here, ‘Tr ’ denotes the sum over all eigenvalues of an operator. In the case of the density
operator, ρ̂ , it is conveniently normalized to obtain the Wigner function [11], W(x) = ρ(x)/

2πh̄. The direct measurement of the Wigner function results from counting the relative
proportions of the eigenvalues ±1 for repeated parity measurements [3]. The density matrix
in the position representation follows from the inverse of the Fourier transform (2).

The result of a parity measurement for reflection through a point X on a quantum system
described by the density operator ρ̂ must be one of the alternatives

ρ̂ X
+ = P̂

X
+ ρ̂ P̂

X
+

Tr ρ̂ P̂
X
+

ρ̂ X
− = P̂

X
−ρ̂ P̂

X
−

Tr ρ̂ P̂
X
−

(3)

allowed by the standard quantum theory [15], where the orthogonal projection operators for
each parity are [11]

P̂
X
± = 1

2 (1 ± πh̄R̂X). (4)

From (2) and (4) we immediately obtain

Tr ρ̂ P̂
X
± = 1

2 (1 ± πh̄W(x)). (5)

The full Wigner function corresponding to ρ̂ X
± depends on the symplectic matrix

J =
(

0 −1

1 0

)
(6)

and the Fourier transform

W̃ (ξ) = 1

2πh̄

∫
dx W(x) exp

( i

h̄
x · Jξ

)
(7)

which is itself a bona fide representation of the density matrix, known as the chord function [14],
or the characteristic function in quantum optics. Then the Wigner functions corresponding to
the projected densities (3) are

WX
± (x) = 1

2

W(x) + W(2X − x) ± 4�W̃ (2(x − X)) exp
(− 2i

h̄
x · JX

)
1 ± πh̄W(X)

(8)

where � denotes the real part of a number. This formula generalizes the specific formula for
W 0

±(x) in the case of circular symmetry [1].
The derivation of (8) is straightforward if one combines the reflection operators R̂x with

the translation operators,

T̂ ξ = exp
( i

h̄
x̂ · Jξ

)
= exp

( i

h̄
(ξpq̂ − ξqp̂ )

)
(9)
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to form a quantum version [14] of the affine group of the translations and reflections [16] in
phase space:

T̂ ξ1 T̂ ξ2 = T̂ ξ1+ξ2 exp
(
− i
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ξ1 · Jξ2

)
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2
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2
exp
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)
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(10)

Thus, the Weyl symbol corresponding to P̂
X
±ρ̂ P̂

X
± is[

P̂
X
±ρ̂ P̂

X
±
]
(x) = 1

2
(Tr R̂xρ̂ ± Tr R̂xR̂Xρ̂ ± Tr R̂xρ̂ R̂X + Tr R̂xR̂Xρ̂ R̂X)

= 1
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(
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)
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Therefore the first two terms lead directly to Wigner functions and we obtain (8) by using
the alternative definition of the chord representation [14],

Ã(ξ) = Tr T̂ −ξ Â. (12)

The complete knowledge of the Wigner function can be translated into any other
representation of the density matrix, but we shall now show that the special features of
parity reduced states are clearly manifest in the Wigner–Weyl representation. It is well
known that the Wigner function of most pure states displays narrow negative oscillations.
If the quantum system evolves in contact with the external environment, decoherence [4, 5]
smoothes the Wigner function and eventually erases the negative fringes. The threshold time
for complete positivity [17, 18] of the Wigner function is independent of the initial pure
state, within the Markovian approximation and the further assumptions of linear coupling
and quadratic Hamiltonian [18]. In the following simple illustrations of this scenario we
shall verify that a measurement of the parity operator generates a central spike of maximum
modulus [19], W(0) = ±(πh̄)−1, on the previously smoothed Wigner function. Furthermore,
a weaker pattern of fringes reemerges, resembling those of pure states. Quantitative measures
still indicate overall decoherence, confirmed by the coarse-graining of W(x), far from the
reflection centre. Even so, the positivity threshold for the further Markovian evolution of an
odd state, W−(x), is the same as for a pure state, generally exceeding the time for ordinary
mixed states to lose their negative regions. The sharp spike of W±(x) signals the full recovery
of quantum parity as a consequence of its experimental measurement. It should be noted that
the following calculations are exact, with no basis truncations in spite of the decoherence.
Thus the Wigner function fully reveals the hybrid structure of parity reduced mixed states.

As a first example, consider the Wigner function corresponding to a pure coherent state
[15, 10], |Y〉, with 〈q〉 = Q and 〈p〉 = P . It is well known that this Wigner function is

WY(x) = 1

πh̄
exp

(
− (x − Y)2

h̄

)
= 1

πh̄
exp

(
− (p − P)2 + (q − Q)2

h̄

)
(13)

i.e. just a minimum uncertainty Gaussian. The measurement of parity with respect to the
origin [20] produces one of the alternatives allowed by (8), which can be interpreted as
pure Wigner functions corresponding to the sum or the difference of the coherent states |Y〉
and |−Y〉:

W 0
±(x) = 1

2πh̄

exp
(− (x−Y)2

h̄

)
+ exp

(− (x+Y)2

h̄

) ± 2 exp
(− x2

h̄

)
cos

(
2x·JY

h̄

)
1 ± πh̄ exp

(−Y2

h̄

) (14)

For sufficiently large components of Y,WY(0) is very small, so we have nearly the same
probability of obtaining the state |+〉, corresponding to W 0

+ (x), as the state |−〉. Both these
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Figure 1. Wigner function of an odd superposition of two coherent states in units where h̄ = 0.1.
The horizontal plane is the phase space, x = (p, q).

projected Wigner functions resolve into three separate Gaussians. Those centred on ±Y are
smooth, whereas the Gaussian at the origin is modulated by fringes. These states are sometimes
referred to as ‘Schrödinger cat states’ and it is easily verified that W 0

±(0) = ±(πh̄)−1. Figure 1
presents the familiar form of W 0

−(x). The ‘subplanckian’ scale of the fine oscillations near the
origin is taken to be a sure sign of quantum coherence [21].

Already in this simple example, we met the strangeness peculiar to parity measurements.
The linearity of quantum mechanics allows us to describe the states |+〉 and |−〉 as alternative
superpositions of the states |Y〉 and |−Y〉. It may seem perverse, but we can equally describe
the latter classical-like states as particular superpositions of the Schrödinger cats, |+〉 and
|−〉. Indeed, an ideal parity measurement enforces this unintuitive interpretation. Since the
projections of the Wigner function provide real probabilities, it follows that, after the parity
measurement, the position −Q is just as likely as Q and, likewise, the momenta −P and P

are equally probable, even though the negative options would be most unprobable in the initial
state.

If the system is not completely isolated from the external environment, even an initially
pure state evolves into a mixture, i.e. the density operator develops into a probability
distribution over pure state densities. A simple example is a system in which we neglect
the action of an internal Hamiltonian while allowing for linear coupling with the environment
through the position q̂ and the momentum p̂. The solution of the Fokker–Planck equation
[4, 18] that determines the evolution of the Wigner function is

W(x, t) = 1

2πh̄

∫
dy W(y − x, 0) exp

(
− y2

2h̄c2t

)
. (15)

This effect of the environment that progressively coarse-grains an initial pure state is more
general than would appear in our simple model. Internal motion and dissipative coupling to
the environment can also be included [18]. Proceeding, though, with the evolution (15) for
the initial Schrödinger cat state W(x, 0) = W 0

−(x), we obtain

W(x, t) = N

πh̄(2c2t + 1)

[
exp

(
− (x − Y)2

h̄(2c2t + 1)

)
+ exp

(
− (x + Y)2

h̄(2c2t + 1)

)
− 2 exp

(
− x2

h̄(2c2t + 1)

)
exp

(
− 2c2tY2

h̄(2c2t + 1)

)
cos

(
2x · JY

h̄(2c2t + 1)

)]
(16)

with N−1 = 2(1 − exp (−Y2/h̄)). Thus, the positivity threshold is t0 = 1/(2c2) in this
case. The full Wigner function W(x, t0) is shown in figure 2. One should be aware that the
symmetry of W(x, t0) as regards to 0 has nothing to do with the parity of the mixture of states
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Figure 2. Decoherent evolution of the Wigner function in figure 1 at the positivity threshold.

Figure 3. Wigner function after an odd measurement carried out on the mixture represented in
figure 2.

it represents. In fact, one has W(0, t0) = 0, which shows that the probabilities of an even or
odd parity measurement are actually equal.

The result (8) of a further ideal odd parity measurement on the mixed Wigner function
W(x, t0) = 0 is displayed in figure 3. Again the value of the Wigner function is brought down
to its minimum −(πh̄)−1, but the neighbouring interference fringes are only partly regenerated
by the measurement. Thus, the hybrid nature of the state, which is pure only as concerns parity
with respect to R̂0, is graphically exhibited by its Wigner function.

Allowing this spiky state to interact with the environment as before, we immediately
verify that the corresponding Wigner function becomes positive again as soon as the further
interval t0 has passed, just as if it were a pure state. This follows from a simple extension of
our previous arguments [18]. Ordinary mixed states lose the negative regions of their Wigner
function before pure states, but odd parity mixtures must await for the pure state threshold.
This depends only on the parameters of the internal quadratic Hamiltonian and of the linear
coupling to the environment. If the initial state |−〉 evolves for a longer time in contact
with the outside environment, the two mounds in figure 2 erode even further and eventually
interpenetrate. Figure 4 shows a profile of the sharp spike that is superimposed on this smooth
classical background by a positive parity measurement. Note the small negative ripples, which
are tell-tale signs of quantum coherence.

So far, all our computations support the conjecture that W+(x), as well as W−(x), always
takes on negative values, no matter how far decoherence has proceeded prior to the parity
measurement.

We have derived the general form of parity reduced mixed states and shown that their
hybrid property, that is intertwining between classical coarse graining and fine nonlocal
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Figure 4. Profile along a diagonal direction in the phase space of the Wigner function reduced by
an even measurement far beyond the positivity threshold.

quantum information coded into a selection rule, is suitably resolved by the corresponding
Wigner function. The latter, indeed, distil all the quantumness of the mixture into a local
spike in the otherwise smoothed phase space geography. This quantum strangeness has no
counterpart in classical waves and their Wigner functions [22]. Any well tuned ensemble of
clarinets is capable of producing sound waves where the odd harmonics of the fundamental
note are missing. It should be pointed out, however, that there is no relation of such classical
standing waves and their harmonics, with the odd or even number of quantized photons in an
optical cavity, which are all of the same frequency. All the same, there is a sense in which
the manipulation of ideal parity measurements imposes the waviness of quantum matter. For
example, if the parity of a mixed state of photons in a cavity is measured and immediately
afterwards a photon escapes and is detected, the main effect should be the reversal of the sign
of the central spike [19]. To what extent real laboratory experiments will be able to evince the
full features of spiky Wigner functions remains to be seen. The initial experiments in quantum
optics involving single atom masers [3] are impressive, but, so far, they have been dedicated
to the measurement of the Wigner function, rather than to the production of a new kind of
quantum state.

All the formulae in this letter have been presented for systems with a single degree of
freedom, but they are easily generalized by extending the matrix J to higher dimensions and
by suitably altering the powers of 2πh̄.
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References

[1] Englert B-G, Sterpi N and Walther H 1993 Parity states in the one-atom maser Opt. Commun. 100 526–35
[2] Lutterbach L G and Davidovich L 1997 Method for direct measurement of the Wigner function in cavity QED

and ion traps Phys. Rev. Lett. 78 2547–50
[3] Bertet P, Auffeves A, Maioli P, Osnaghi S, Meunier T, Brune M, Raimond J M and Haroche S 2002 Direct

measurement of the Wigner function of a one-photon Fock state in a cavity Phys. Rev. Lett. 89 200402



Letter to the Editor L255

[4] Giulini D, Joos E, Kiefer C, Kupsch J, Stamatescu I-O and Zeh H D 1996 Decoherence and the Appearance of
a Classical World in Quantum Theory (Berlin: Springer)

[5] Zurek W H 2003 Decoherence einselection and the quantum origins of the classical Rev. Mod. Phys. 75 715
[6] de Olivieira M C and Munro W J 2000 Quantum computation with mesoscopic superposition states Phys. Rev.

A 61 042309
[7] de Olivieira M C 2003 Teleportation of Bose–Einstein condensates by controlled elastic collisions Phys. Rev. A

67 022307
[8] Wigner E P 1932 On the quantum correction for thermodynamic equilibrium Phys. Rev. 40 749–59
[9] Hillery M, O’Connel R F, Scully M O and Wigner E P 1984 Distribution functions in physics: fundamentals

Phys. Rep. 106 121–67
[10] Schleich W P 2001 Quantum Optics in Phase Space (Berlin: Wiley-VCH)
[11] Royer A 1977 Wigner function as the expectation value of a parity operator Phys. Rev. A 15 449–50
[12] Weyl H and Robertson H 1931 Theory of Groups and Quantum Mechanics (New York: Dover)
[13] Grossman A 1976 Parity operator and quantization of δ-functions Commun Math. Phys. 48 191–4
[14] Ozorio de Almeida A M 1998 The Weyl representation in classical and quantum mechanics Phys. Rep. 295

265–344
[15] Cohen-Tannoudji C, Diu B and Lalo F 1977 Quantum Mechanics (New York/Paris: Wiley/Hermann)
[16] Coxeter H S M 1961 Introduction to Geometry (New York: Wiley)
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